

ADNet: Lane Shape Prediction via Anchor Decomposition

Introduction

(a) Annotations

(b) Traditional

(c) Ours

Illustrating different dynamic anchor proposal methods: (a) Two scenarios: Top to bottom, only/not only ray from edges. (b) Dispersed anchors: Only appliable for the first scenario.

(c) Our anchors: Ensured quality and flexibility in two scenarios.

Approach Encoder **FPN** Large Kernel Attention Conv

Conv

Overview of our ADNet. Lane context first extracted by the encoder and enhanced by FPN embedded with Large Kernel Attention (LKA) , which plants after FPN's lateral layer to reduce computation cost. Then, low-level context \mathcal{F} is delivered into Start Point Generate Unit (SPGU) to generate start point guided anchors and guidance map, while high-level context \mathcal{F} is further aggregated through Adaptive Lane Aware Unit (ALAU) with the help of the auxiliary guidance map. After pooling, we optimise lane lines via General Lane IoU loss.

Lingyu Xiao †, Xiang Li ‡, Sen Yang †, Wankou Yang†* * School of Automation, Southeast University, China **‡IMPlus@PCALab**, VCIP, CS, Nankai University, China

Methods	F1@50 ↑	Acc ↑	FP 👃	FN ↓	FPS ↑	Method	F1@50 ↑	FPS ↑	Normal ↑	Crowded ↑	Dazzle ↑	Shadow †	No Line ↑	Arrow ↑	Curve ↑	Cross ↓
VOS Methods			•	Y		Segmentation Based										
GAM [17]	70.30	85.50	24.1	21.2	24	SCNN-VGG16 [29]	71.60	25	90.60	69.70	58.50	66.90	43.40	84.10	64.40	1990
RVOS [38]	51.90	90.90	61.0	11.2	_	RESA-R50 [48]	75.30	65	92.10	73.10	69.20	72.80	47.70	88.30	70.30	1503
STM [28]	75 60	90.20	22.8	12.9	10	SAD-ENet [16]	70.80	33	90.10	68.80	60.20	65.90	41.60	84.00	65.70	1998
	60.00	90.20	22.0	$\frac{12.7}{22.2}$	0	LaneAF-DLA34 [1]	77.41	28	91.80	75.61	71.78	79.12	51.38	86.88	72.70	1360
	00.00	04.00 46.10	23.3 59.0	LL.L	9	AtrousFormer-R34 [43]	78.08	-	92.83	75.96	69.48	77.86	50.15	88.66	71.14	1054
TVOS [46]	24.00	46.10	58.2	62.1	36	Keypoint Based	_									
MMA-Net [47]	83.90	91.00	11.1	10.5	20	PINet-Hourglass [19]	74.40	27	90.30	72.30	66.30	68.40	49.80	83.70	65.20	1427
Lane Detection						FOLOLane-ERFNet [33]	78.80	-	92.70	77.80	75.20	79.30	52.10	89.00	69.40	1569
Methods						GANet-R34 [40]	79.39	69	93.73	77.92	71.64	79.49	52.63	90.37	76.32	1368
LaneNet [41]	72.10	85.80	12.2	20.7	64	Parameter Based	_									
SCNN-VGG16 [29]	49.10	90.70	12.8	11.0	25	BézierLaneNet-R34 [9]	75.57	78	91.59	73.20	69.20	76.74	48.05	87.16	62.45	888
SAD-ENet [16]	75.50	88.60	17.0	15.2	33	Laneformer-R50 [12]	77.06	-	91.77	75.41	70.17	75.75	48.73	87.65	66.33	19
UFLD-R34 [31]	31.00	85.20	11.5	21.5	124	Anchor & Detection Based	_									
LSTR [25]	70.30	88.40	16.3	14.8	40	FastDraw-R50 [30]	-	-	85.90	63.60	57.00	69.90	40.60	79.40	65.20	7013
$CI RNet_R18 [49]$	57 27	88.00	6.0	13.5	80	UFLDv2-R34 [32]	76.00	114	92.50	74.80	65.50	75.50	49.20	88.80	70.10	1910
CL PNot P101 [40]	50.41	00.99	0.9	12.5	28	CurveLanes-L [42]	74.80	-	90.70	72.30	67.70	70.10	49.40	85.80	68.40	1746
	<u> </u>	00.03	2.1	12.3	38	LaneATT-R122 [35]	77.02	38	91.74	76.16	69.47	76.31	50.46	86.29	64.05	1264
ADNet-R18 [*] (Ours)	65.05	94.25	5.0	5.0	-	SGNet-R34 [34]	77.27	-	92.07	75.41	67.75	74.31	50.90	87.97	69.65	1373
ADNet-R34* (Ours)	64.97	<u>94.37</u>	4.5	4.9	-	CondLane-R34 [24]	78.74	70	<u>93.38</u>	77.14	71.17	79.93	51.85	89.89	73.88	1387
ADNet-R18 (Ours)	89.97	94.23	5.0	5.1	<u>87</u>	CLRNet-R34 [49]	79.73	63	93.49	78.06	74.57	<u>79.92</u>	54.01	90.59	72.77	1216
ADNet-R34 (Ours)	90.39	94.38	4.4	4.9	77	ADNet-R18 (Ours)	77.56	87	91.92	75.81	69.39	76.21	51.75	87.71	68.84	1133
ADNet-R101 (Ours)	90.90	94.27	4.7	<u>5.0</u>	45	ADNet-R34 (Ours)	<u>78.94</u>	77	92.90	77.45	<u>71.71</u>	79.11	<u>52.89</u>	<u>89.90</u>	70.64	1499
Experiment results on VII_100																

Experiment results on vil-100

Experiment results on CULane

Visualisation

Visualisation results on VIL-100