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Approach

(a) Annotations (b) Traditional (c) Ours

Illustrating different dynamic anchor proposal methods:
(a) Two scenarios: Top to bottom, only/not only ray from edges.
(b) Dispersed anchors: Only appliable for the first scenario.
(c) Our anchors: Ensured quality and flexibility in two scenarios. 

Overview of our ADNet. Lane context first extracted by the encoder and enhanced by FPN embedded with Large Kernel Attention (LKA)
, which plants after FPN’s lateral layer to reduce computation cost. Then, low-level context ′ is delivered into Start Point Generate Unit 
(SPGU) to generate start point guided anchors and guidance map, while high-level context is further aggregated through Adaptive Lane 
Aware Unit (ALAU) with the help of the auxiliary guidance map. After pooling, we optimise lane lines via General Lane IoU loss.
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Latency vs F1@50 on VIL-100
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Visualisation results on VIL-100
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